Неметаллические включения в стали
Неметаллические включения в стали. Известно, что качество стали в значительной мере зависит от содержания, формы, размера и распределения в ней неметаллических включений. Внедрение в сталеплавильную практику эффективных технологических приемов десульфурации обеспечивает получение стали с содержанием серы на уровне 0,003 %, что в значительной степени понижает отрицательное влияние сульфидных неметаллических включений на свойства металла. Вместе с тем, как последствие глубокой десульфурации существенно повышается влияние кислорода на качественные показатели металла, который связан в оксидные и оксисульфидные неметаллические включения.
Довольно часто эксплуатационные свойства стали определяются степенью различия физических свойств неметаллических включений (твердость, прочность, коэффициент термического расширения) с металлической матрицей. Существенное значение имеет и то, что сталь представляет собой гетерогенный материал, компоненты которого в форме оксидов, сульфидов, нитридов и т.п. входят в состав сложных, а часто и многофазных неметаллических включений.
Неметаллические включения по деформируемости делят на три класса: недеформируемые глобули (например, SiO2); недеформируемые оксиды, дробящиеся в строчки (корунд А12О3), алюминаты кальция СаО – Al2O3; шпинели МnО – Аl2О3; пластичные сульфиды и силикаты.
Силикаты (SiO2xCaO, SiO2xFeO, SiO2xMnO) при низких температурах хрупкие, при высоких – пластичные. Температура их размягчения зависит от состава: снижается с ростом содержания в них марганца и растет – с увеличением концентрации железа или кальция. Интервал температур, в котором меняется их деформируемость, лежит в области горячей прокатки. Поэтому от незначительных на первый взгляд особенностей ведения плавки и раскисления зависит, будут ли деформироваться силикаты при прокатке данной плавки или нет.
Наиболее опасными с точки зрения разрушения металла являются твердые и остроугольные включения зерен корунда. Опасны также крупные включения: строчки алюминатов и алюмосиликаты размером от 100 до 300 мкм. От возникновения строчек алюминатов можно защититься вакуумным раскислением или заменой раскислителя.
В последние годы в металлургии все чаще применяют различные микролегулирующие элементы и их комбинации – в том числе щелочноземельные (кальций, барий, стронций), редкоземельные (иттрий, неодим, празеодим) и ряд нитридообразующих элементов (ванадий, титан, цирконий и др.).
Данные элементы применяются с целью понижения растворимости вредных примесей (кислорода, серы, азота и т.д.) в готовой стали, а также совершенствования природы неметаллических включений.
В настоящее время для раскисления стали наиболее широко используют алюминий. При высоких остаточных концентрациях алюминия химический состав оксидных включений в стали приближается к чистому глинозему, что часто является нежелательным как с точки зрения технологических, так и потребительских свойств металла. Поэтому во время внепечной обработки, как правило, проводят технологические мероприятия, направленные на изменение природы неметаллических включений.
Модифицирование неметаллических включений в раскисленной алюминием стали осуществляется кальциевой обработкой расплава. Кальций растворяется в обрабатываемом металле и, обладая высокой химической активностью по отношению к кислороду, частично замещает алюминий в составе оксидных включений. При достаточно высокой концентрации растворенного кальция оксидные неметаллические включения в стали представлены, главным образом, алюминатами кальция различного состава.
Считается оптимальным если в результате модифицирования оксидные неметаллические включения в стали представлены богатыми оксидом кальция алюминатами состава CaOx2Al2O3 и CaOxAl2O3 или фазами с более высоким содержанием оксида кальция. Температура плавления этих соединений ниже температуры внепечной обработки стали и разливки, поэтому в расплаве алюминаты кальция указанного состава находятся в жидком состоянии и имеют форму близкую к глобулярной. В затвердевшей стали благоприятная форма неметаллических включений сохраняется. Кроме того, при горячей пластической деформации металла включения такого состава в минимальной степени склонны к изменению формы и размеров, что положительно отражается на механических и эксплуатационных показателях.
Весьма перспективным для снижения количества оксидов в стали представляется её вакуумирование в нераскисленном состоянии, чтобы использовать реакцию окисления углерода для снижения содержания водорода, азота и кислорода. Широко известно, что сталь, раскисленная углеродом под вакуумом, меньше загрязнена оксидными включениями, чем сталь, которая до вакуумной обработки была раскислена кремнием. В этой же стали меньше выражены микро- и макроликвационные процессы.
Действительно, меньшей загрязненности стали оксидными включениями при ее раскислении углеродом под вакуумом, благоприятствует то, что удаление кислорода за счет взаимодействия с углеродом позволяет избежать образования некоторого количества включений при последующем раскислении ферросплавами. Поэтому при вводе кремния в сталь после вакуумуглеродного раскисления первичные эндогенные включения, как правило, не образуются. Такой способ обработки позволяет производить сталь, свободную от крупных оксидных включений и их локальных скоплений.
Сталь, раскисленная углеродом под вакуумом, обладает более высокими механическими свойствами при их меньшем разбросе на продольных и поперечных образцах. Установлено также, что в стали, раскисленной углеродом под вакуумом, сульфиды имеют благоприятное строение.
Таким образом, развитие технологии разливки стали на МНЛЗ обусловило повышение требований к качеству стали.
Процессы рафинирования стали в ковше, разработанные за последние десятилетия, дополнили сталеплавильное производство новыми возможностями и расширили диапазон марочного состава стали, который можно получать в условиях современных сталеплавильных цехов. Как правило, наилучшие результаты достигаются в случае применения агрегатов для комплексной внепечной обработки стали типа «ковш-печь», в которых помимо процессов рафинирования стали обеспечивается ее доводка по химическому составу и температуре.